Why Interleukin 17A is the most potential next-generation drug target in angiogenesis-mediated diseases

Md Shamsuddin Sultan Khan


Hawkesbury Institute for the Environment, University of Western Sydney, Hawkesbury Campus, Bourke Street, Richmond, NSW AUSTRALIA 2753

*Corresponding Author. E-mail: jupitex@gmail.com


Angiotherapy, 2017, 1(1), 030–032. (Received 16 March 2017, Published 10 May 2017). 



Citation: Md Shamsuddin Sultan Khan. (2017). Why Interleukin 17A is the most Potential Next Generation Drug Target in Angiogenesis-mediated diseases. Angiotherapy, 1(1), pages 030-032


Cancer treatment is investigated worldwide using various resources. The molecular pathogenesis of cancer gives us advantages to find potential anticancer drugs. Scientists are now more prone to develop drugs that bind in a specific site to decrease the potential side effects and prolong the cure. The treatment of cancer can be divided into different categories. Surgery is the first line treatment for solid tumors and the early stages of cancer. Even benign growths can be removed by this technique (Abeloff , 2008; Edmund et al., 2007). The goal of radiation treatment is the direct killing of cancerous cells. Chemotherapy is the most widely used drug for cancer treatment and prevention but it is not widely accepted for its chronic side effect. Hormonal drugs are designed to prevent the signaling process for continued growth and division of cells that are hormone dependent. Antibodies work as specific inhibitors either depriving the signal for cancer cells or inducing cell death. Complementary and alternative medicines are used to slow down the cancer progress. Vaccines, biological response modifiers and targeted therapies are very recent inclusions in the fight against cancer. From these vast treatment sciences, only molecular targeted drug could be the next generation anticancer therapy. Molecular scientists are searching for the crucial biological factors that cause tumor development and subsequent metastatic phase. Recently, it was found that Interleukin-17 has an association to human malignancy (Tartour et al., 1999; Numasaki et al., 2003; Kato et al., 2001). IL-17 is the core factor to promote tumor development, tumor growth and angiogenesis. Thus, this molecular targeted drug can be investigated to cure cancer. Ligand mediated drugs can be designed to target this IL-17 protein with very few side effect.

Keywords: IL17A, Cancer, Angiogenesis, VEGF